DEPARTMENT OF PHYSICS CHANDIDAS MAHAVIDYALAYA

A Govt. Aided Degree College Affiliated to the University of Burdwan
UGC Accrediated under section 2(f) \& 12(B) [1979] * NAAC Accrediated in 2016 KHUJUTIPARA, BIRBHUM, WEST BENGAL, INDIA- 731215

E-mail: kiron.phys@gmail.com (HOD)
Mobile: 9735340332 (HOD)

Three-Year Zoology General Degree Course (CBCS) Course Module

CORE COURSE I-A: MECHANICS (Practical)			
Module 1	Measurements of length (or diameter) using Vernier Caliper, Screw Gauge and Travelling Microscope.	4	
Module 2	\bullet To determine the Moment of Inertia of a Flywheel/ regular shaped object.	4	
Module 3	\bullet To determine Young's Modulus by flexure method.	4	
Module 4	- To determine the Modulus of Rigidity of a wire by dynamical method. - To determine the Elastic Constants of a Wire by Searle's method.	6	
Module 5	- To determine g by Bar/Kater's Pendulum. To determine the coefficient of viscosity by Poiseuille's method.	6	

\left.		SEMESTER-II
	CC-1B: ELECTRICITY AND MAGNETISM (Theory)	$\right)$

Module 6	- Fundamentals of Wind energy. - Wind Turbines and different electrical machines in wind turbines. - Power electronic interfaces, and grid interconnection topologies.	2
Module 7	- Ocean Energy Potential against Wind and Solar. - Wave Characteristics and Statistics, Wave Energy Devices. - Tide characteristics and Statistics, Tide Energy Technologies. - Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass.	3
Module 8	- Geothermal Resources - Geothermal Technologies	2
Module 9	- Hydro power resources, hydro power technologies. - Environmental impact of hydro power sources.	2
Module 10	- Introduction, Physics and characteristics of piezoelectric effect. - Materials and mathematical description of piezoelectricity. - Piezoelectric parameters and modeling piezoelectric generators, Piezoelectric energy harvesting applications, Human power.	3
Module 11	- Linear generators, physics mathematical models. - Recent applications......... - Carbon captured technologies, cell, batteries, power consumption. - Environmental issues and Renewable sources of energy, sustainability.	3
Demonstrations and Experiments		
Module 1	- Demonstration of Training modules on solar energy, wind energy. - Conversion of vibration to voltage using piezoelectric materials - Conversion of thermal energy into voltage using thermoelectric modules.	3

	SEMESTER-IV CC-1D: WAVES AND OPTICS (Theory)	Class
Module 1	- Linearity and Superposition Principle. - Oscillations having equal frequencies, - Oscillations having different frequencies (Beats).	4
Module 2	- Graphical and Analytical Methods. - Lissajous Figures with equal an unequal frequency and their uses.	3
Module 3	- Transverse waves on a string. - Travelling and standing waves on a string. - Normal Modes of a string.	2
Module 4	- Group velocity, Phase velocity. - Plane waves and Spherical waves. - Wave intensity.	3
Module 5	- Surface Tension: Synclastic and anticlastic surface - Excess of pressure - Application to spherical and cylindrical drops and bubbles-variation of surface tension with temperature - Jaegar's method.	4
Module 6	- Viscosity: Viscosity - Rate flow of liquid in a capillary tube Poiseuille's formula. - Determination of coefficient of viscosity of a liquid. - Variations of viscosity of a liquid with temperature lubrication.	3

Module 5	- Schrodinger equation for non- relativistic particles. - Momentum and Energy operators. - Stationary states; physical interpretation of wave-function.	4
Module 6	- Probabilities and normalization. - Probability and probability current densities in one dimension. 1	3
Module 7	- One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization. - Quantum dot as an example; Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier.	5
Module 8	- Size and structure of atomic nucleus and its relation with atomic weight - Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. - Nature of nuclear force, NZ graph, semi-empirical mass formula and binding energy.	4
Module 9	- Radioactivity: stability of nucleus - Law of radioactive decay. - Mean life \& half-life	4
Module 10	- α decay; β decay - energy released. - Spectrum and Pauli's prediction of neutrino. - γ-ray emission.	4
Module 11	- Fission and fusion-mass deficit, relativity and generation of energy - Fission-nature of fragments and emission of neutrons. - Nuclear reactor: slow neutrons interacting with Uranium-235. - Fusion and thermonuclear reactions.	6
DSE-1A: ELEMENTS OF MODERN PHYSICS (Practical)		
Module 1	- To determine the value of Boltzmann constant using the V-I characteristic of the PN diode.	4
Module 2	- Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light.	4
Module 3	- To determine the value of e / m by magnetic focusing.	4

Skill Enhancement Course: SEC-3: COMPUTATIONAL PHYSICS (Theory)		Class
Module 1	\bulletImportance of computers in Physics, paradigm for solving physics problems for solution. Usage of linux as an Editor.	1
Module 2	Algorithm: Definition, properties and development. -	Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series. Calculation of sin (x) as a series, algorithm for plotting (1) lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal.

K. Mandas
Deptt. of Physics Chandidas Mahavidyalaya Khujutipara, Birbhum

